Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Reliable methods to determine experimental energy barriers for transport in salt-rejecting membranesFree, publicly-accessible full text available June 1, 2026
-
Societal Impact StatementForest ecosystems absorb and store about 25% of global carbon dioxide emissions annually and are increasingly shaped by human land use and management. Climate change interacts with land use and forest dynamics to influence observed carbon stocks and the strength of the land carbon sink. We show that climate change effects on modeled forest land carbon stocks are strongest in tropical wildlands that have limited human influence. Global forest carbon stocks and carbon sink strength may decline as climate change and anthropogenic influences intensify, with wildland tropical forests, especially in Amazonia, likely being especially vulnerable. SummaryHuman effects on ecosystems date back thousands of years, and anthropogenic biomes—anthromes—broadly incorporate the effects of human population density and land use on ecosystems. Forests are integral to the global carbon cycle, containing large biomass carbon stocks, yet their responses to land use and climate change are uncertain but critical to informing climate change mitigation strategies, ecosystem management, and Earth system modeling.Using an anthromes perspective and the site locations from the Global Forest Carbon (ForC) Database, we compare intensively used, cultured, and wildland forest lands in tropical and extratropical regions. We summarize recent past (1900‐present) patterns of land use intensification, and we use a feedback analysis of Earth system models from the Coupled Model Intercomparison Project Phase 6 to estimate the sensitivity of forest carbon stocks to CO2and temperature change for different anthromes among regions.Modeled global forest carbon stock responses are positive for CO2increase but neutral to negative for temperature increase. Across anthromes (intensively used, cultured, and wildland forest areas), modeled forest carbon stock responses of temperate and boreal forests are less variable than those of tropical forests. Tropical wildland forest areas appear especially sensitive to CO2and temperature change, with the negative temperature response highlighting the potential vulnerability of the globally significant carbon stock in tropical forests.The net effect of anthropogenic activities—including land‐use intensification and environmental change and their interactions with natural forest dynamics—will shape future forest carbon stock changes. These interactive effects will likely be strongest in tropical wildlands.more » « lessFree, publicly-accessible full text available July 1, 2026
-
ABSTRACT The thermal sensitivity of heart rate (fH) in fishes has fascinated comparative physiologists for well over a century. We now know that elevating fH is the primary mechanism through which fishes increase convective oxygen delivery during warming to meet the concomitant rise in tissue oxygen consumption. Thus, limits on fH can constrain whole-animal aerobic metabolism. In this Review, we discuss an increasingly popular methodology to study these limits, the measurement of pharmacologically induced maximum fH (fH,max) during acute warming of an anaesthetized fish. During acute warming, fH,max increases exponentially over moderate temperatures (Q10∼2–3), but this response is blunted with further warming (Q10∼1–2), with fH,max ultimately reaching a peak (Q10≤1) and the heartbeat becoming arrhythmic. Because the temperatures at which these transitions occur commonly align with whole-animal optimum and critical temperatures (e.g. aerobic scope and the critical thermal maximum), they can be valuable indicators of thermal performance. The method can be performed simultaneously on multiple individuals over a few hours and across a broad size range (<1 to >6000 g) with compact equipment. This simplicity and high throughput make it tractable in lab and field settings and enable large experimental designs that would otherwise be impractical. As with all reductionist approaches, the method does have limitations. Namely, it requires anaesthesia and pharmacological removal of extrinsic cardiac regulation. Nonetheless, the method has proven particularly effective in the study of patterns and limits of thermal plasticity and holds promise for helping to predict and mitigate outcomes of environmental change.more » « less
-
Membrane distillation (MD) can treat high-salinity brine. However, the system’s efficiency is hindered by obstacles, including salt scaling and temperature polarization. When properly implemented, surface patterns can improve the mass and heat transfer in the boundary layer, which leads to higher MD efficiency. In this work, the performance of direct contact membrane distillation (DCMD) using Sharklet-patterned poly (vinylidene fluoride) (PVDF) membranes is investigated. Both non-patterned and patterned PVDF membranes are prepared by lithographically templated thermally induced phase separation (lt-TIPS) process with optimized conditions. Sharklet patterns on the membranes improve the DCMD performance: up to 17 % higher water flux and 35 % increased brine-side heat transfer coefficient. The scaling resistance of the membranes during DCMD is tested by both saturated CaSO4 solution and hypersaline NaCl solutions. Patterned PVDF membranes show an average of 30 % higher water flux and up to 45 % lessened flux decline over time compared with non-patterned membranes when treating high-concentration brines. Post-mortem analysis reveals that Sharklet-patterned membranes display less salt-scaling on surfaces with smaller-sized CaSO4 and NaCl crystals, maintain a relatively cleaner surface, and exhibit better retention of hydrophobicity.more » « less
-
Natural enzymes are powerful catalysts, reducing the apparent activation energy for reaction, enabling chemistry to proceed as much as 1015 times faster than the corresponding solution reaction. It has been suggested for some time that in some cases quantum tunneling can contribute to this rate enhancement by offering pathways through a barrier inaccessible to activated events. A central question of interest to both physical chemists and biochemists is the extent to which evolution introduces below the barrier or tunneling mechanisms. In view of the rapidly expanding chemistries for which artificial enzymes have now been created, it is of interest to see how quantum tunneling has been used in these reactions. In this paper, we study the evolution of possible proton tunneling during C-H bond cleavage in enzymes that catalyze the Morita-Baylis-Hillman (MBH) reaction. The enzymes were generated by theoretical design followed by laboratory evolution. We employ classical and centroid molecular dynamics approaches in path sampling computations to determine if there is a quantum contribution to lowering the free energy of the proton transfer for various experimentally generated protein and substrate combinations. This data is compared to experiments reporting on the observed kinetic isotope effect (KIE) for the relevant reactions. Our results indicate modest involvement of tunneling when laboratory evolution has resulted in a system with a higher classical free energy barrier to chemistry (that is when optimization of processes other than chemistry result in a higher chemical barrier.)more » « lessFree, publicly-accessible full text available February 6, 2026
An official website of the United States government
